A m_1 = 14.0 kg object and a m_2 = 10.5 kg object are suspended, joined by a cord that passes over a pulley with a radius of 10.0 cm and a Mass of 3.00 kg. The cord has a negligible mass and does not slip on the pulley. The pulley rotates on its axis without friction. The objects start from rest 3.00 m apart. Treating the pulley as a uniform disk. Calculate the time interval required for m_1 to hit the floor with and without the mass of the pulley.

B) Let's find the acceleration of the system and then we can find the time.

C) Solve for the acceleration and use a motion equation to calculate the time interval required for m_1 to hit the floor.

Time for
$${
m m_1}$$
 to hit the floor $\Delta x = v_{_o} t - {1\over 2} a t^2$

Time for m_1 to hit the floor if the Mass of the pulley is not taken into account. Will it take **more / less** time to for m_1 to fall to the floor?

Can a ever be > than g? Yes / No

A m_1 = 14.0 kg object and a m_2 = 10.5 kg object are suspended, joined by a cord that passes over a pulley with a radius of 10.0 cm and a Mass of 3.00 kg. The cord has a negligible mass and does not slip on the pulley. The pulley rotates on its axis without friction. The objects start from rest 3.00 m apart. Treating the pulley as a uniform disk. Calculate the time interval required for m_1 to hit the floor with and without the mass of the pulley. Do not use Energy Principles here.

a

B) Let's find the acceleration of the system and then we can find the time.

Three equations - three unknowns

$$egin{aligned} m_1g - T_1 &= m_1a \ T_2 - m_2g &= m_2a \ + T_1 - T_2 &= rac{1}{2}Ma \ m_1g - m_2g &= m_1a + m_2a + rac{1}{2}Ma \end{aligned}$$

Solve symbolically for the acceleration

$$(m_1 - m_2)g = (m_1 + m_2 + \frac{1}{2}M)a$$
 $a = g \frac{(m_1 - m_2)}{(m_1 + m_2 + \frac{1}{2}M)}$
notice
 $a \leq g$

C) Now using a motion equation to calculate the time interval required for m_1 to hit the floor.

$$=9.8m/s^{2}\frac{(14.0-10.5)\,kg}{(14.0+10.5+\frac{1}{2}3.00)\,kg}=1.32\,m/s^{2}$$

Time for m₁ to hit the floor

$$\Delta x = v_o t - \frac{1}{2}at^2$$
$$t = \sqrt{\frac{2\Delta x}{a}} = \sqrt{\frac{2(3.00m)}{1.319m/s^2}} = 2.13 \sec^2$$

Time for m₁ to hit the floor if the Mass of the pulley is not taken into account.

$$a = 9.8m/s^2 rac{(14.0 - 10.5) \, kg}{(14.0 + 10.5) \, kg} = 1.43 \, m/s^2$$

$$t = \sqrt{\frac{2\Delta x}{a}} = \sqrt{\frac{2(3.00m)}{1.43m/s^2}} = 2.05 \text{ sec}$$

That's a 3.6% difference in time to fall. Not much! That's why we could leave it out earlier.