A $m_{1}=14.0 \mathrm{~kg}$ object and a $m_{2}=10.5 \mathrm{~kg}$ object are suspended, joined by a cord that passes over a pulley with a radius of 10.0 cm and a Mass of 3.00 kg . The cord has a negligible mass and does not slip on the pulley. The pulley rotates on its axis without friction. The objects start from rest 3.00 m apart. Treating the pulley as a uniform disk. Calculate the time interval required for m_{1} to hit the floor with and without the mass of the pulley.

B) Let's find the acceleration of the system and then we can find the time.

Can a ever be > than g? Yes / No
C) Solve for the acceleration and use a motion equation to calculate the time interval required for m_{1} to hit the floor.

Answer 1 pts
Time for m_{1} to hit the floor $\Delta x=v_{o} t-\frac{1}{2} a t^{2}$

Time for m_{1} to hit the floor if the Mass of the pulley is not taken into account.
Will it take more / less time to for m_{1} to fall to the floor?

$$
t=\begin{array}{|cc|}
\\
\text { Answer 1 pts }
\end{array}
$$

A $m_{1}=14.0 \mathrm{~kg}$ object and a $m_{2}=10.5 \mathrm{~kg}$ object are suspended, joined by a cord that passes over a pulley with a radius of 10.0 cm and a Mass of 3.00 kg . The cord has a negligible mass and does not slip on the pulley. The pulley rotates on its axis without friction. The objects start from rest 3.00 m apart.
Treating the pulley as a uniform disk. Calculate the time interval required for m_{1} to hit the floor with and without the mass of the pulley. Do not use Energy Principles here.

$$
\Sigma F_{y}=T_{1}-m_{1} g=-m_{1} a
$$

Sum of Forces

$$
\Sigma F_{y}=T_{2}-m_{2} g=m_{2} a
$$

moment of inertia for disk

$$
I=\frac{1}{2} M R^{2}
$$

angular to linear velocity

$$
\alpha=\frac{a}{r}
$$

Sum of Torques
friction is the direct cause of the torque.

$$
\Sigma \tau=T_{1} R-T_{2} R=I \alpha=\frac{1}{2} M R^{2}\left(\frac{a}{R}\right)
$$

B) Let's find the acceleration of the system and then we can find the time.

Three equations - three unknowns

$$
\begin{aligned}
m_{1} g-T_{1} & =m_{1} a \\
T_{2}-m_{2} g & =m_{2} a \\
+T_{1}-T_{2} & =\frac{1}{2} M a \\
\hline m_{1} g-m_{2} g & =m_{1} a+m_{2} a+\frac{1}{2} M a
\end{aligned}
$$

Solve symbolically for the acceleration

$$
\begin{gathered}
\left(m_{1}-m_{2}\right) g=\left(m_{1}+m_{2}+\frac{1}{2} M\right) a \\
a=g \frac{\left(m_{1}-m_{2}\right)}{\left(m_{1}+m_{2}+\frac{1}{2} M\right)}
\end{gathered}
$$

notice $a \leq g$

Time for m_{1} to hit the floor

$$
\begin{gathered}
\Delta x=v_{o} t-\frac{1}{2} a t^{2} \\
t=\sqrt{\frac{2 \Delta x}{a}}=\sqrt{\frac{2(3.00 m)}{1.319 m / s^{2}}}=2.13 \mathrm{sec}
\end{gathered}
$$

C) Now using a motion equation to calculate the time interval required for m_{1} to hit the floor.

$$
a=9.8 \mathrm{~m} / \mathrm{s}^{2} \frac{(14.0-10.5) \mathrm{kg}}{\left(14.0+10.5+\frac{1}{2} 3.00\right) \mathrm{kg}}=1.32 \mathrm{~m} / \mathrm{s}^{2}
$$

Time for m_{1} to hit the floor if the Mass of the pulley is not taken into account.

$$
\begin{gathered}
a=9.8 \mathrm{~m} / \mathrm{s}^{2} \frac{(14.0-10.5) \mathrm{kg}}{(14.0+10.5) \mathrm{kg}}=1.43 \mathrm{~m} / \mathrm{s}^{2} \\
t=\sqrt{\frac{2 \Delta x}{a}}=\sqrt{\frac{2(3.00 \mathrm{~m})}{1.43 \mathrm{~m} / \mathrm{s}^{2}}}=2.05 \mathrm{sec}
\end{gathered}
$$

That's a 3.6\% difference in time to fall. Not much! That's why we could leave it out earlier.

