A Mechanical Analog

Sum of the Forces
$\Sigma F=m g-b v=m a$
Solve for the acceleration
Separate Variables

$$
\frac{d v}{g-\frac{b}{m} v}=d t
$$

Integrate

$$
\int_{0}^{v} \frac{d v}{g-\frac{b}{m} v}=\int_{0}^{t} d t
$$

$$
\begin{aligned}
& \frac{-m}{b}\left[\ln \left(g-\frac{b}{m} v\right)-\ln (g)\right]=t \\
& \text { take exponential of both sides }
\end{aligned} \quad\left(g-\frac{b}{m} v\right) / g=e^{-b t / m}
$$

$$
v(t)=\frac{m g}{b}\left(1-e^{-b t / m}\right)
$$

Physics 196 Chapter 31 Problem 66

The bar of mass m in is pulled horizontally across parallel rails by a massless string that passes over an ideal pulley and is attached to a suspended mass \boldsymbol{M}. The uniform magnetic field has a magnitude B, and the distance between the rails is ℓ. The rails are connected at one end by a load resistor R. Derive an expression that gives the horizontal speed of the bar as a function of time.

Faraday's Law

The magnetic flux is changing through the area bounded by the bar and the rails. According to Faraday's Law a changing magnetic flux will induce an emf in the circuit which will then produce a current which will then produce an induced magnetic field that will oppose the changing magnetic flux.

Looking at the diagram, the direction of the induced current is counterclockwise. This will produce a magnetic field that will add to the external magnetic field through the circuit. Since the arrows are pointing in the same direction there is a repulsion between the induced and the external magnetic fields to the right.

Since the magnetic flux is decreasing through the circuit the induced magnetic field will produce a force on the bar that will oppose this change.

$$
\sum F_{y}=F_{T}-F_{g}=-M a_{y} \quad \sum F_{x}=F_{B}-F_{T}=-m a_{x}
$$

Falling Mass

$$
a_{y}=a_{x}
$$

$$
F_{T}=m g-M a
$$

We need to find the induced magnetic force

$$
F_{T}=F_{B}+m a^{\text {Sliding Bar }}
$$

Solve for the acceleration

$$
\alpha=\frac{m g}{M+m} \quad \beta=\frac{B^{2} l^{2}}{R(M+m)}
$$

$$
\begin{gathered}
\frac{d v}{\frac{m g}{M+m}+\frac{B^{2} l^{2} v}{R(M+m)}}=d t \\
\int_{0}^{v} \frac{d v}{\alpha-\beta v}=\int_{0}^{t} d t \\
\frac{-1}{\beta}[\ln (\alpha-\beta v)-\ln \alpha]=t \\
\ln (\alpha-\beta v)-\ln \alpha=-\beta t \\
(\alpha-\beta v) / \alpha=e^{-\beta t} \\
v(t)=\frac{\alpha}{\beta}\left(1-e^{-\beta t}\right)
\end{gathered}
$$

Over time, this magnetic force will balance with the gravitational force on the bar. This magnetic force is dependent upon the velocity of the bar. The bar will reach a terminal velocity once these two forces acting on the bar are equal.

A Mechanical Analog

> An object falling through a liquid reaches terminal velocity due to two competing forces.
> Viscous Force
> $\sum F=m g-b v=m a$

Gravitational Force

Sum of the Forces

$$
\Sigma F=m g-b v=m a
$$

Separate Variables
$\frac{d v}{g-\frac{b}{m} v}=d t$
Integrate
Solve for the acceleration

$$
\begin{aligned}
& \begin{array}{|r|r}
\hline{ }^{2 \mathrm{pts}}\left(g-\frac{b}{m} v\right) / g=e^{-b t / m} \\
\text { Solve for Velocity } & 2 \mathrm{pts}
\end{array}
\end{aligned}
$$

Physics 196 Chapter 31 Problem 66

The bar of mass m in is pulled horizontally across parallel rails by a massless string that passes over an ideal pulley and is attached to a suspended mass \boldsymbol{M}. The uniform magnetic field has a magnitude B, and the distance between the rails is ℓ. The rails are connected at one end by a load resistor R.
Derive an expression that gives the horizontal speed of the bar as a function of time.
Draw Induced current, Magnetic

FreeBody Diagrams

Faraday's Law

The magnetic flux is changing through the area bounded by the bar and the rails. According to Faraday's Law a changing magnetic flux will induce an emf in the circuit which will then produce a current which will then produce an induced magnetic field that will oppose the changing magnetic flux.

Looking at the diagram, the direction of the induced current is counterclockwise. This will produce a magnetic field that will add to the external magnetic field through the circuit. Since the arrows are pointing in the same direction there is a repulsion between the induced and the external magnetic fields to the right.

Since the magnetic flux is decreasing through the circuit the induced magnetic field will produce a force on the bar that will oppose this change.

Sum of the Forces

$$
\Sigma F_{y}=F_{T}-F_{g}=-M a_{y}
$$

\square

Falling Mass

$$
a_{y}=a_{x}
$$

$$
F_{T}=m g-M a
$$

\square

We need to find the induced magnetic force

Set eq's equal and solve for the acceleration

Let's reduce our stress and set

$$
\alpha=\frac{m g}{M+m} \quad \beta=\frac{B^{2} l^{2}}{R(M+m)}
$$

Plug in F_{B} and simplify.

$$
\frac{m g-F_{B}}{M+m}=\frac{d v}{d t}
$$

Draw the graph of the velocity wrt time. What is the terminal velocity? Show on the graph the velocity at e^{-2} ? 4 pts

Integrate

$$
\int_{0}^{v} \frac{d v}{\alpha-\beta v}=\int_{0}^{t} d t
$$

$$
(\alpha-\beta v) / \alpha=e^{-\beta t}
$$

Solve for Velocity

